Nkedugists.com.ng

INTERIM JOINT MATRICULATION BOARD AHMADU BELLO UNIVERSITY ZARIA

INTERIM JOINT MATRICULATION BOARD EXAMINATION 2016

SUBJECT:

'A' LEVEL MATHEMATICS PAPER I

DATE SCHEDULED:

SATURDAY 20TH FEBRUARY, 2016

TIME ALLOWED:

TWO HOURS (2 HRS)

Instructions:

- (i) Unless otherwise restricted, the use of mathematical tables is PERMITTED.
- (ii) Use of SCIENTIFIC calculator is ALLOWED.
- (iii) Marks for each question are indicated at the end.
- (iv) Do not spend more than HALF (1/2) HOUR on section A.
- (v) Attempt ALL questions in section A; and FOUR (4) questions from other sections, choosing at least

ONE (1) question from each of sections B and C.

 $\frac{\text{SECTION A (20\%)}}{1. \text{ Given that } \sin 30^{\circ} = \frac{1}{2}, \text{ obtain in surd form } \tan 15^{\circ}.$

[04marks]

2. Express $\frac{\sqrt{3} + \sqrt{2}i}{\sqrt{3} - \sqrt{2}i}$ in the form x + iy.

[04marks]

- 3. Obtain the quadratic equation whose roots are the reciprocals of the roots of the equation [04marks] $ax^2 + x + c = 0.$
- 4. What is the remainder when the polynomial $3x^3 2x^2 + 6x 1$ is divided by (x+1)? [04marks]

5. Show that $\sin \phi = \frac{2 \tan \frac{\phi}{2}}{1 + \tan^2 \frac{\phi}{2}}$

[04marks]

SECTION B: ALGEBRA

6. (a) Prove by mathematical induction that

(i)
$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$

(ii) $4^{2n} - 1$ is a multiple of 5.

[10marks]

Nkedugists.com.ng

-2-

2016 IJMBE A/L MATHEMATICS I contd.

- (b) The polynomial $px^3 + 3x^2 + 3x + q$ has a remainder 19x 11 when divided by $x^2 3x + 2$. Find the values of p and q. With these values of p and q factorize the polynomial into linear factors. [10marks]
- 7. (a) Solve the inequality $\frac{(x-1)(x+3)}{x+2} \ge 0$ [12marks]
- (b) If the roots of the quadratic equation $cx^2 + ax b = 0$ are α and β , obtain the quadratic equation whose roots are $\frac{\alpha^2}{\beta}$, $\frac{\beta^2}{\alpha}$. [08marks]
- 8. (a) Given that $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, show that $(A+B)^2 \neq A^2 + 2AB + B^2$.

(b) Resolve $\frac{x^2+1}{x(x-1)(x+1)}$ into partial fractions. Hence obtain its binomial expression up

to term in x^3 .

dfelemel[09marks]

SECTION C: TRIGONOMETRY AND COMPLEX NUMBERS

9. (a). Find roots of the equation $Z^5 - 1 = 0$ where Z = x + iy

[10marks]

(b). Express $\tan 3\theta$ in terms of $\tan \theta$.

[10marks]

10. (a) If $\cos(x+\theta) = \cos(x-\phi)$, find $\cot x$ in terms of θ and ϕ .

[08marks]

(b). If $\sin A = \frac{-4}{5}$ and $\cos B = \frac{12}{13}$ where A and B are both in quadrant IV, find without using

tables, the values of (i) cos(A+B); (ii) sin(A-B).

[12marks]

11. (a) Describe the locus defined by |Z+i|=2|3Z+i| where Z=x+iy.

[12marks]

(b). Express $12\sin\theta - 5\cos\theta$ in terms of $R\sin(\theta - \alpha)$ and hence solve the equation

 $12\sin\theta - 5\cos\theta = 6.5 \text{ for } 0 \le \theta \le 360^{\circ}.$

[08marks]